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Abstract. The exact solution of an Ashkin-Teller model, with layer and spatial anisotropy 
and Z, x Z, symmetry, is presented. The model is related to the eight-vertex model by a 
sublattice or orbifold duality and it has the same free energy and magnetisation. The exact 
solution manifold is a three-dimensional submanifold of the full six-dimensional thermo- 
dynamic space. It  admits a Z, symmetry relating three regimes each exhibiting different 
partial order. In the spatially isotropic case, these regimes are separated by three lines of 
continuously varying critical behaviour which coalesce at the four-state Potts critical point. 
The magnetisations and polarisation are derived using corner transfer matrices giving rise 
to the appearance of chiral and Virasoro characters. The associated critical exponents 
confirm the known values. In particular, we obtain the value x, = for the magnetic scaling 
dimension and identify the next-to-leading thermal field. 

1. Introduction 

The Ashkin-Teller model (Ashkin and Teller 1943) was first proposed as a generalisa- 
tion of the Ising model to describe a four-component alloy. The general model has a 
Z 2  x Zz symmetry and consists (Fan 1972a) of two anisotropic square lattice Ising 
models coupled by four-spin interactions. The phase diagram of this model has been 
much studied (Fan and Wu 1970, Fan 1972b, Wegner 1972, Wu and Lin 1974, Knops 
1975, Ditzian et a1 1980, Pfister 1982) particularly in connection with the duality 
properties of the model. For spatially isotropic interactions, the model exhibits three 
self-dual critical lines which intersect at the four-state Potts critical point. Each of 
these lines exhibits continuously varying critical behaviour described by a conformal 
theory with central charge c = 1. 

The critical behaviour of the Ashkin-Teller model on a self-dual line can be 
understood (Kadanoff 1979, Kadanoff and Brown 1979, Knops 1980, den Nijs 1981) 
by using the renormalisation group to map the model onto the Gaussian model. The 
continuously varying scaling dimensions are given by 

(1 . la )  

where m and n are arbitrary integers and the renormalisation-group exponent y varies 
along the critical line over the range 0 < y < :. These dimensions are augmented by a 
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sector of fixed scaling dimensions (Yang 1987, Saleur 1987). The list of relevant 
primary operators in this sector is 

xo = 0 (identity) 

x b  = E (second magnetisation) 

x ,  = 4 (magnetisation) 

x = 2 (marginal operator). 
( l . l b )  

The Ashkin-Teller model can be readily solved on the self-dual line. In this paper, 
we solve the Ashkin-Teller model on a more general non-critical manifold exhibiting 
three distinct forms of partial order. This manifold extends off the self-dual critical 
line in the direction of the next-to-leading scaling field p with scaling dimension 

xp = Xo,1 = 2 - y. ( 1 . l C )  

Our results for the free energy and magnetisation exponents confirm the known values. 
In particular, we find the critical exponents 

2 - & = 2 / y  L = 1/8Y ( 1 . 2 a )  

where overbars indicate exponents obtained by approaching the critical line along the 
exact solution manifold, i.e. using p as the deviation-from-criticality variable. We 
conclude that the value of the magnetic scaling dimension is 

( 1 . 2 b )  

The layout of the paper is as follows. In section 2 we define the general anisotropic 
Ashkin-Teller model, describe its symmetries and phase diagram and derive a:i elliptic 
parametrisation on the exact solution manifold. In section 3, we use corner transfer 
matrices to calculate the magnetisations and polarisation on the exact solution manifold. 
We also write the traces of the diagonal blocks of the corner transfer matrices as 
products of two c = 4 Virasoro characters. The critical behaviour and its connection 
with scaling theory is discussed in section 4. 

2. The model 

2.1. The phase diagram and exact solution manifold 

The anisotropic Ashkin-Teller model on a square lattice is an interaction-round-a-face 
or I R F  model (Baxter 1982). A four-state compound spin ui = ( s i ,  t i ) ,  where s i ,  ti = * l  
are Ising spins, is associated with each site i of the lattice. The Hamiltonian H is 
given by 

PH = - (Ksisj  + Lti$ + Msisjtitj) - C (K’sis j  + L’tit, + M’sisjtitj) ( 2 . 1 )  
horiz vert 

where p = l / k B T  is the inverse temperature and the sums are over the horizontal and 
vertical bonds of the lattice, respectively. We will assume that the two- and four-spin 
interactions are ferromagnetic, i.e. K ,  K’, L, L’, M and M ’ S  0. The Hamiltonian ( 2 . 1 )  
is invariant under two independent spin reversal symmetries: 

: si f, -si Pi?;= I 

3 2  : ti f, - ti 92:= I.  

( 2 . 2 a )  

( 2 . 2 6 )  
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These symmetries, which are spontaneously broken in the ordered phases, are the 
origin of the generic Z2 x Z2 symmetry of the model. The total spin reversal operator 
is 9? = W , W 2 .  The Ashkin-Teller interactions allow for two types of anisotropy: spatial 
and layer anisotropy. We say the model is spatially isotropic if K = K‘, L = L’, M = M ’  
and layer isotropic if K = L, K‘= L’. In the case of layer isotropy, the model has the 
dihedral group D4 as its symmetry group. In the completely symmetric case (K  = L = M, 
K ‘  = L’ = M’)7 the Ashkin-Teller model reduces to the spatially anisotropic four-state 
Potts model with the full symmetry of the symmetric group S4. 

Under the A-D-E classification (Pasquier 1987a, b, c, Ginsparg 1988), the critical 
four-state Potts and critical Ashkin-Teller models are associated with the affine Lie 
algebra DY’. The critical A-D-E models are solvable. Furthermore, it is known that 
each critical model in the A or D series admits (Kuniba and Yajima 1987) an off-critical 
integrable extension involving elliptic functions. The Ashkin-Teller model we consider 
here is the most general off-critical integrable extension to the critical DY) model. To 
cast the Ashkin-Teller model in the Dit’ representation, we place non-interacting spins 
on sites added to the centre of each face of the lattice. The state of the spins on these 
sites is fixed to a new fifth state ai = 0 = (0,O). The five allowed spin states can then 
be described by the adjacency diagram of figure 1. This graph is the Dynkin diagram 
of the affine Lie algebra DY’. The new square lattice, containing the additional sites, 
is rotated at 45” to the original lattice as shown in figure 2. Each of its faces contains 
one bond of the original lattice, either horizontal or vertical, and is coloured black or 
white accordingly in a checkerboard fashion. 

The Ashkin-Teller partition function is given by 

z= C exp(-PH) = C n W(ai,  ai, a k ,  ai) (2.3) 
spins spins (i,j,k,/) 

where the sums are over all spins ai, the product is over all square faces ( i ,  j ,  k, I )  of 
the new lattice, and the Boltzmann weights of black and white faces are given by 

( 2 . 4 ~ )  

(2.4b) 
w(fli, ai, a k ,  a,) = wl(ai, u k )  

w(ai, 9 7  a k ,  a/) = w 2 ( q ,  a/) 

Figure 1. The Dynkin diagram of the Lie algebra 
Dk”. This graph is the adjacency diagram of the 
Ashkin-Teller and four-state Potts models. 

Figure 2. The anisotropic Ashkin-Teller model (2.1) 
is defined on the square lattice indicated by open 
circles. A rotated square lattice, consisting of open 
and solid circles, is obtained by adding fixed spins 
at the centre of each square face of this lattice. Black 
and white faces contain the horizontal and vertical 
interactions, respectively. On the new lattice the 
conditions on the states of adjacent spins is specified 
by the Dynkin diagram of figure 1.  
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with edge weights 

W,(u, ,  a , )=exp(Ks ,s ,+  Lt,r,+Ms,s,r,t,) ( 2 . 5 ~ )  

W,(U,, U,)  = exp( K‘s,s, + L’r,r, + M’s,s,r,r,). (2 .5b)  

The partition function (2 .3)  admits symmetries in addition to the spin reversal sym- 
metries 3, and 9??. Specifically, i t  remains invariant if the Hamiltonian H is replaced 
by the Hamiltonians YH or  3I-I obtained under the action of the transformations: 

Y: s, - f ,  y’ = I ( 2 . 6 ~ )  

9: S, + t ,  r ,  -+ s,t, ,p = I. ( 2 . 6 b )  

The Zz symmetry SF, which effectively interchanges the pairs of interactions K with L 
and K ’  with L’, is in fact a duality transformation. Two other duality transformations, 
which interchange the other pairs, can be obtained by conjugation with 9. The Z, 
symmetry 9 acts to cyclically permute the interactions ( K ,  L, M )  and ( K ’ ,  L’, M ’ ) .  
It follows that the magnetisations ( s , ) ~ ,  ( f l ) H  and the polarisation ( s , t l ) H  are related 

( f l ) H  = (SI)  / H  ( 2 . 7 a )  

( S , t I ) H  = i H  (2 .7bj  

by 

where 

etc, and we will usually drop  the suffix H. Clearly, in the spatially isotropic case i t  is 
only necessary to consider a fundamental regime such as 0 s M s L 6 K. The results 
for the other regimes can then be obtained by application of the transformations 9 
and 9. 

The exact solution manifold of the anisotropic Ashkin-Teller model is a three- 
dimensional manifold in the thermodynamic space spanned by the six interactions K, 
L, M ,  K’ ,  L’, M ‘ .  It is specified by the edge weights (Fendley and Ginsparg 1989) 

W , ( u , u ) = ( c + a ) r / &  W,( U, U )  = ( c + b ) / t / 5 r  

W,(cr, % U )  = ( c  - a ) r / a  

W ,  ( U, 2 , a )  = ( b  + d 1 r / a  

W ,  ( U, 92 u 1 = ( b - d ) r l  f i  

W,( a ,  2u) = ( c - b j / t / z  r 

W,( U, 2 I cr) = ( a  + d ) / v 2 r  
W, ( U, 2? u 1 = ( a - d ) / v 3 r  

(2 .8)  

where a, b, c, d are arbitrary subject only to the overall normalisation 

(c’-a’j(bZ-d’)(c’-b’)(a‘-d’) = 16. (2 .9)  

The gauge factor r is also arbitrary, but cancels out of products of the weights if there 
are equal numbers of black and white faces. This parametrisation arises by performing 
a duality transformation (Wegner 1972) on one sublattice of the eight-vertex model 
with vertex weights a, b, c, d. This is equivalent to the orbifold duality of Fendley and  
Ginsparg (1989). The general anisotropic Ashkin-Teller model (2 .1)  is in fact related 
(Wu 1977) by duality in this way to a staggered eight-vertex model. This staggered 
model also has six interaction parameters occurring in pairs; four two-spin and  two 
four-spin couplings. Requiring this eight-vertex model to be homogeneous, and  hence 
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solvable, gives rise to three constraints among the six interactions. After some algebra, 
it follows from these constraints, or equivalently the constraints implied by (2.8), that 
the interactions of the corresponding solvable Ashkin-Teller model must satisfy: 

sinh 2K sinh 2K' 
sinh 2L - sinh 2L' 

sinh 2M sinh 2M' 
sinh 2L sinh 2L' 

A*=-- (2. loa) 

Az=-- - (2. lob) 

sinh( K + L) sinh( K ' +  L') 
cosh(K - L) cosh(K'- L')= '* 

exp(2 M + 2M') (2.10c) 

In the spatially isotropic case, these reduce to the single constraint 

exp(2K + 2 L + 2 M) = exp(2K) + exp(2 L) + exp(2M) (2.11) 

which describes a two-dimensional surface in the three-dimensional thermodynamic 
space spanned by K ,  L, M. This exact solution surface is shown in figure 3. The 
complete phase diagram of the spatially isotropic Ashkin-Teller model, as determined 
by Wu and Lin (1974), is shown in figure 4. 

The Ashkin-Teller model has previously been solved (see for example Baxter 1982) 
for layer isotropic interactions (K = L, K ' =  L'). The exact solution manifold in this 
case is given by a specialisation of the constraints (2.10). For interactions that are 

Figure 3. The exact solution manifold XlX2X3 of the spatially isotropic Ashkin-Teller 
model ( K = K ' ,  L=L', M = M ' )  given by exp(ZK+2L+2M)=exp(ZK)+ 
exp(2L)+exp(2M). For convenience in plotting, the coordinates are (x, y, z )  = 
(tanh K, tanh L, tanh M) with K,  L., M PO. The line PQR, given by K = L =  M, is the 
four-state Potts line where the points R and P correspond to zero and infinite temperature, 
respectively. The Ashkin-Teller model has a Z, symmetry about the line PQR generated 
by permuting the interactions K, L and M. The three lines of continuously varying critical 
behaviour AlQ, A2Q and A3Q coalesce at the four-state Potts critical point Q. 
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Figure 4. The phase diagram of the spatially isotropic Ashkin-Teller model plotted using 
the same coordinates as in figure 3. The topology of the phase diagram is given by Wu 
and Lin (1974). The thermodynamic space is divided into five phases: one ferromagnetic, 
one disordered and three partially ordered. These phases are separated by six critical 
surfaces which intersect along the three lines of continuously varying critical behaviour. 
The six surfaces, given by BlA2QA3, C I D l A 3 Q A 2  and their images under the Z ,  
symmetry, should exhibit Ising critical exponents reflecting Z, symmetry breaking. The 
exact solution manifold X l X 2 X 3  only intersects the partially ordered regimes. The model 
reduces to k ing  models with known critical lines on the six faces of the cube. 

both spatially and layer isotropic, the surface (2.11) reduces to the known self-dual 
line (Fan 1972a) 

sinh 2K = exp(-2M) K = L. (2.12) 

If M < K ,  this is a critical line with continuously varying critical behaviour. On the 
other hand, if M > K ,  this line lies entirely within a partially ordered region with 
(sl) = ( t l )  = 0 and (sl t , )  > 0 as shown by Seaton and Pearce (1989). If M = 0, the model 
decouples into two independent Ising models with critical lines given by 

sinh 2K = 1 L arbitrary (2.13 a )  

sinh 2L = 1 K arbitrary. (2.13 6 )  

Similarly, in the limit M +. a, we must have SJ, = fir,, so the model reduces to an Ising 
model with interaction K + L and a critical line given by 

(2 .13~)  

Critical lines equivalent to (2.12) and (2.13) are obtained by permuting K, L and 
M. The three lines of continuously varying critical behaviour so obtained intersect at 
the four-state Potts critical point 

K = L = M = ' l  4 og3. (2.14) 

sinh 2(K + L) = 1. 
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The other critical lines equivalent to (2.13) join to define the boundaries of critical 
surfaces as shown in figure 4. The phase diagram is divided into five regions: three 
partially ordered (one of (s,), ( t l )  or ( s , t , )  positive), one disordered ((sI) = ( t l )  = ( s , t l )  = 
0) and one with complete ferromagnetic order ((sl), ( t l ) ,  (sl t l)>O). The six critical 
surfaces separating these phases should exhibit Ising critical exponents reflecting the 
fact that one of the two Z2 symmetries is spontaneously broken as each surface is 
crossed. Note that the layer isotropic phase diagram (Baxter 1982), which exhibits 
only one partially ordered region, is a diagonal cross-section of the three-dimensional 
phase diagram. 

2.2. Elliptic parametrisation 

The exact solution manifold of the anisotropic Ashkin-Teller model can be conveniently 
parametrised in terms of elliptic functions. One way to do this is to start with the 
parametrisation of the eight-vertex weights 

O,((A/2) - U )  
Ol(A/2) @2(A/2) 

&((A/2)- U )  
O4(A/2) 63tA/2) * 

a + b = p  4((A/2) -  U )  

04((A/2)- U )  

a - b = p  

(2.15) 

c + d = p  c - d = p  

Here U is a spectral parameter, A is the crossing parameter and e l ,  O r ,  0 3 ,  e4 are 
standard elliptic functions of nome p ,  with lpI < 1, defined (Gradshteyn and Rhyzik 
1965) by 

e , ( u )  = e , ( u , p )  = 2 p 4  sin U n (1 -2p'" COS 2u +P4n)(1 - - p 2 " )  
s 

(2.16a) 
n = l  

X 

e,( U ) = e,( U, p ) = 2p COS U n ( 1 + 2p2" COS 2 U + p4" ( 1 - p 2 n  ) (2.16 b) 
n=1 

r 

e 3 ( 4  = e,( U, p )  = n (1 + 2p2"-' COS 2~ +p4"-?)( 1 - . p 2 " )  
n = ,  

( 2 . 1 6 ~ )  

0: 

e 4 ( u ) =  e4(u ,p)=  n ( i - 2 p 2 " - 1 ~ ~ ~ 2 ~ + p 4 " - 2 ) ( 1 - p 2 n ) .  (2.16d) 

The prefactor p is fixed by the normalisation (2.9). Application of elliptic function 
identities leads to the following expressions for the parametrised edge weights: 

n = 1  

m - (u/2))e2(U/2)e3(u/2)e4(U/2)  -p' eI (u )e l (A  - ( ~ / 2 ) )  ~ , ( u , w ) = J Z p r  - 
e l ( A  )e2(o)e3(o)e4(o) a 4(A)&(u/2)  

( 2 . 1 7 ~ )  
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with similar formulas for the edge weights W2(a,  a ' )  given by the crossing symmetry 

(2.176) 

These weights were observed in passing to satisfy the Yang-Baxter or star-triangle 
equations by Kashiwara and Miwa (1986) in their study of N-state models with broken 
Z N  symmetry for the special case N = 4. The explicit parametrisation of the interactions 
takes the form 

Wz(a ,  ~ ' I u ,  r )  = W,(a ,  a'lh - U ,  l / r ) .  

( 2 . 1 8 ~ )  

(2.18b) 

( 2 . 1 8 ~ )  

Again the other interactions K ' ,  L', M '  are obtained by replacing the spectral parameter 
U with A - U  in these expressions. Also, applying elliptic function identities to the 
invariants ( 2 . 1 0 ~ )  and (2.10b), we obtain 

( 2 . 1 9 ~ )  

(2.19b) 

In the following we will restrict the elliptic parameters to the regime 

O < u < A < 2 ~ / 3  O < p < l .  (2.20) 

With this restriction the elliptic parametrisation covers one sixth of the exact solution 
manifold. Clearly, the spatially isotropic case ( K  = K ' ,  L = L',  M = M ' )  is given by 
U = h / 2  and the spectral parameter U is a measure of spatial anisotropy. Indeed, the 
crossing transformation U + A - U implements a rotation through 90". The special point 
A = 0 corresponds to the four-state Potts critical point (2.14). Similarly, when A = ~ / 2 ,  
it is seen that M = 0 so the Ashkin-Teller model decouples into two independent Ising 
models. At A = ~ / 4 ,  the model reduces to the four-state model with broken Z4 symmetry 
solved by Kashiwara and Miwa (1986) and Jimbo et a1 (1986). From (2.18) it is also 
seen that the duality transformation ( K  t) L, K ' t ,  L')  is implemented by changing the 
sign of the elliptic nome ( p e - p )  which has the effect of interchanging O3 and e4. 
The self-dual line thus occurs for p = 0. 

The parametrised Ashkin-Teller weights (2.17) satisfy the star-triangle or Yang- 
Baxter equations as a consequence of duality (Fendley and Ginsparg 1989). The model 
can therefore be solved using commuting transfer matrix methods. Of course, the 
parametrised weights (2.17) with U replaced by i u  and A replaced with ih  also satisfy 
the star-triangle equations. This is not a new solution, however, since it is simply 
related to the original solution through the conjugate modulus transformation 

&(U, e -F)  = - i ( v / E ) " *  exp(-u*/E)e,(riu/E, exp(-?r'/s)) 

e,( U, e-") = ( r / E ) ' l 2  exp(-u2/ E ) o ~ ( T ~ u / E ,  exp(-?r2/ E ) )  

e h ,  e-') = ( T/ E exp(-u2/ E )  o , ( T ~ u /  E ,  exp(-T2/E)) 

e4(u,  e - f )  = ( T / E ) ' / ~  exp(-u2/E)e2(riu/E, exp(-.rr2/E)) 

(2.21) 
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where p = exp(-e).  Notice that the conjugate modulus transformation acts to inter- 
change 0. and 04. By successive applications of the duality and  conjugate modulus 
transformations, it is possible to cover the entire exact solution manifold either in 
terms of the original variables U, A, exp( -e)  or in terms of the conjugate modulus 
variables n i u / e ,  .rriA/E, exp(-.rr'/f). Finally, we observe that, in terms of these 
transformations, the Z3 symmetry 3 can be realised as a cyclic permutation of 0 2 ,  O3 
and Oa.  

3. Calculation of the order parameters 

In this section we use corner transfer matrices (CTM)  to calculate the magnetisations 
and  polarisation using the elliptic parametrisation in the fundamental regime (2.20). 
The results are extended to the rest of the exact solution manifold (2.10) by applying 
the symmetries (2.7). 

Let us define normalised corner transfer matrices (CTM) A, B, C, D in the usual 
way (Baxter 1981, 1982) so that A corresponds to the lower-right corner of the lattice. 
The elements of A ( u )  are given by 

(3.1) 

where the product is over all m(m + 1)/2 faces of the corner, the sum is over all interior 
spins and U = ( a , ,  . . . , am) and a'= (ai,  . . . , U ; )  are the in spins along the left and  
upper edges of the corner respectively. The corner spin is m1 = U {  = (sl , t , ) .  The spins 
on  the perimeter are fixed to the groundstate values given by U, = (0,O) on one sublattice, 
which we call the even sublattice, and U, = (+, +) on the odd sublattice. The normalisa- 
tion constant (Y is chosen so that the groundstate element of A ( u )  is unity. Similarly, 
we define corner transfer matrices E( U), C( U), D( U )  corresponding respectively to 
the upper-right, upper-left and lower-left corners of the lattice. These are normalised 
so that the groundstate elements of B (  U), C (  U )  and D( U )  are unity. Fixing the gauge 
r = 1, it follows from the crossing symmetry (2.17b) that 

(3.2) 

We will assume that the spin u1 on the corner site is not a fixed spin, i.e. the corner 
site is on the odd sublattice. The two magnetisations of the Ashkin-Teller model can 
then be written as 

-- 1 A(u), , ,  = a 6 ( a , ,  a ; )  1 n w ( ~ , ,  a,, ~ k ,  a,) 
\pins ~ t , i , k , l l  

C ( u )  = A( U )  B (  U )  = D( U )  = A(A - U ) .  

Tr SABCD Tr TABCD 
( ' I ) =  Tr ABCD = Tr ABCD 

where the elements of the matrices S and T are 

(3.3a) 

Similarly, the polarisation is 

Tr STABCD 
T r A B C D  ' 

(SI t l )  = (3.3c) 

Clearly, these one-point functions are independent of the gauge r and the normalisations 
of A, B, C and D. 
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In  the limit of large m, the corner transfer matrices can be diagonalised (Baxter 
1982). In particular, the eigenvalues of A ( u )  take the simpie form 

 ad(^),,,,, = mu exp(-a,,u) (3.4) 

where A d (  U )  denotes the diagonal form of A( U )  and the values of the constants mrr 
and a,  can be determined from special limiting cases. The face weights satisfy the 
initial condition 

w((Tt, fl,? u k r  a,11,0)=(fi)=1P6(ac, ( T k )  (3.5) 

where the plus and minus signs are taken for black and white faces respectively, as in 
the groundstate. It follows that 

and so comparison with (3.4) gives 

m, = 1. (3.7) 

To determine the remaining constant am, we first define 

q = exp(--7Tz/E) x=exp(-.irA/E) w = exp(-.rru/a) (3.8) 

with p =exp(-E)  and perform a conjugate modulus transformation as in (2.21). 
Defining the elliptic function 

we obtain 

p ' r  ~ ( w ' ,  q')E(x'w-', q 2 )  
& E(x2,  q 2 ) E ( w ,  q 2 )  

W,((T,u)=- 

p ' r  ~ ( w ' ,  q2)E(-x2w-' ,  q 2 )  
d2 E(x2,  q ' ) E ( - w ,  92) 

42 E(x2,  q2)E( -qw,  q 2 )  

W1(a, 921a) =- 

W,(u, 9 2 2 ( T )  =-F xw-' 
p ' r  E(w2, q2)E(-qx'w-', q 2 )  

where 

(3.10) 

p ' = p  exp[u(A-U)/&]. (3.11) 

Again the edge weights W2(a,, a,) can be obtained from (3.10) by using the crossing 
symmetry, i.e. by replacing w with xw-'  and r with r-'. 

Take W,(a,  a') and W2(u, (T') to be the entries of matrices W ,  and W,, with rows 
and columns indexed by (+, +), (-, -), (-, +), (+, -). Recalling that we have set 
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r = 1 we find, in the limit x + 0, w - 1 ,  that 

l + w  0 1 - w  0 

a 1 - w  0 l + w  0 
wl-&[ 0 l + W ’  0 

0 1 - w  0 l + w  

The matrix W, is easily diagonalised as W, = P-’DP where 

1 0 0 0  

o o w o  
o o o w  

D = v G [  0 1 0 0  1 
and the orthogonal matrix P is given by 

1 1 1 1  

p = p - d [ :  2 1  - l  1 - 1  ‘ii. 
-1  -1  

We therefore conclude that in this limit 

w(U,, (T,, U,, (T,) - (V~)LlpWH‘ui’u’’u ’ ’ 6(ut* u k )  

where 

H ( 0 ,  (T, 0) = (1 - st)/2 

H ( U ,  0, U ’ )  = (1 - tt’)/2. 

( 3 . 1 2 ~ )  

(3.126) 

( 3 . 1 3 ~ )  

(3.13 6) 

( 3 . 1 4 ~ )  

(3.146) 

(3 .144  

Here 0 = (0,O) is the fixed spin on the even sublattice and (T = (s, t ) ,  ui = (s’, 1’) are 
the four-state compound Ising spins on the odd sublattice. Hence, if the boundary 
conditions are such that ( T ~ + ~  and um+? are the values of the spins on the two sublattices 
at the boundary, then in this limit 

&(U),,, = wnn ( 3 . 1 5 ~ )  

where the integer n ,  is given by 
m 

nu = c .W(u,, U,+l, g,+2)* (3.15 b )  

From (3.4) and (3.8), we see that the remaining undetermined coefficients in the 
eigenvalues are given by 

, = I  

CY, = n , r /  E (3.16) 

and so, from (3.4), the eigenvalues of A ( u )  are given by (3.15) throughout the regime 
(2.20). 
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Let us write 

2n, = ( 1 - p I) + 2( 1 - p 2 )  + 3( 1 - p 7 )  + 4( 1 - p 4 )  -t . . . 
where the Ising spins p , - ] ,  p , ,  s, and t, with i odd are related by 

p,  = t,t,,? 1, = p,p,+2p,+4. . . 
C L , - I  = S,t, s, = p~-Ip,pt+21*!+4 * . . . 

(3.17) 

(3.18) 

It is clear that the even sublattice with fixed spins has dropped out as it should. 
Moreover, the diagonal corner transfer matrices can be written as simple direct products 

A d  ( U ) = B, ( A  - U ) = c, ( U ) = Dd ( - U ) 

1 0  l ) @ (  1 0  ) @ ( '  ',)a(' 03)@('  ' ) @ ( '  O s ) @  . . .  
o w  o w -  o w  0 w4 0 H' 

1 0  1 0  1 0  
0 1  0 -1 

1 0  1 0  

(3.19) 

with w = exp( - T u / & ) .  Putting these expressions into (3.3) and taking the thermo- 
dynamic limit, we therefore obtain 

(3.20) 

with x = e x p ( - ~ A / & ) .  This establishes that the fundamental regime, and  hence the 
entire exact solution manifold apart from the critical manifold, is partially ordered 
with one of the three order parameters being non-zero. In the limit A = ~ / 2 ,  the 
Ashkin-Teller model decouples into two independent Ising models and  the magnetisa- 
tion reduces to the Ising result. 

To examine the critical behavioar we perform a conjugate modulus transformation 
back to the variables p and A.  This yields the result 

(3.21) 

Taking p to be the deviation-from-criticality variable, we see that a s p  
tion has the power-law behaviour 

0 the magnetisa- 

( t l )  - PP" pv = H /  16A. (3.22) 

The result in (3.20) for the magnetisation of the Ashkin-Teller model is identical 
to the formula for the magnetisation of the eight-vertex model (Baxter 1982). This is 
a consequence of the sublattice duality relation between the models. Indeed, the results 
for the magnetisations in (3.20) but not the polarisation could be inferred from duality 
arguments alone using the known results for the eight-vertex model. The derivation 
of these results using corner transfer matrices allows us to make a connection between 
so-called 'one-dimensional partition sums' and  Virasoro characters. It has been 
observed (Date et a1 1987, Kuniba and Yajima 1988, Cardy 1989, Saleur and Bauer 
1989) that the spectrum of corner transfer matrices, with the centre spin set to a 
particular value, yields Virasoro characters. To fix the centre spin CT, = (s l ,  t , )  we insert 
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a projection matrix into the trace over corner transfer matrices and define the 'one- 
dimensional partition sums' 

xu = f T r ( l +  S I S ) (  I + t,  T)&(U)Bd(U)Cd(U)od( U). (3.23) 

Consistent with the fact that the central charge of the Ashkin-Teller model is c = 1, 
we find that the Xu are products of two c = $ Virasoro characters 

(3.24) 

(3.25) 

Here x=exp(- rA/e) ,  xL(q)  are the c =  1 chiral characters of the magnetisation 
operators or twist fields of the associated orbifold conformal field theory (Dijkgraaf 
et a1 1989) and xi"( q )  are the c = Virasoro characters defined by 

)> 
X y ( q )  = ;( n (1 + q n - 1 1 2 )  + n (1 - q n - 1 ' 2  

'x 1 "  
n = 1  n = 1  

(3.26a) 

(3.266) 

( 3 . 2 6 ~ )  

The observed scaling dimensions x = 2h,  with h = O + &  = & and h = $+& = & as in 
(3.24) and (3.25), agree with the magnetic scaling dimensions given in (1.16). A similar 
calculation, with the centre spin (+ = (0, 0), gives 

(3.27) 

Presumably, we do not see the other characters and scaling dimensions because we 
can only calculate in the partially ordered regimes. 

4. Free energy, scaling and critical behaviour 

The Ashkin-Teller model is related by duality (Wegner 1972) to the eight-vertex model. 
It therefore satisfies (Fendley and Ginsparg 1989) the same inversion relation and has 
the same free energy 

1 f =  lim -log 2 
N - x  N 

where 

w =exp( - ru / e )  x=exp(- rA/e)  

q =exp( - r2 / s )  p = exp(-e). 

(4 . la )  

(4.16) 
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This formula applies to the fundamental regime (2.20) and extends to the complete 
exact solution manifold through the symmetries (2.6). The critical manifold is given 
by p = 0. In the spatially isotropic case ( U  = A /2),  this manifold lies on the self-dual line 

sinh 2K = exp( -2M 1 K = L. (4.2) 

The crossing parameter A is related to the interaction M along this critical line by 

2 cos A = exp(4M) - 1 (4.3) 

where 0 < A < 27r/3. The other two critical lines with continuously varying critical 
behaviour shown in figure 3 are obtained by permuting the interactions K ,  L and M. 

The critical behaviour does not depend on the spatial anisotropy U. As p + 0, the 
behaviour of the Ashkin-Teller free energy is the same as for the eight-vertex model 
(Baxter 1982), namely, 

f - p'-" CT = 2 - r / A .  (4.4) 

More generally, scaling theory asserts that the singular part of the free energy is a 
homogeneous function of the thermodynamic fields 

fslng= b-*fIng(b'lt, b'pp, b'-h, b'ek, U, A , .  . .) 

Here b is an arbitrary scale factor, t is the leading thermal scaling field, p is the 
next-to-leading thermal scaling field, h is the scaling. field conjugate to the total 
magnetisation and k is the scaling field conjugate to the polarisation. These scaling 
forms relate the critical exponents G, p, etc obtained using p as the deviation-from- 
criticality to the usual critical exponents a, p, etc obtained using t as the deviation-from- 
criticality variable. 

The scaling dimensions x, are related to the renormalisation exponents y, by 

x, =2-y,  a = t ,  p ,  U, e, etc. (4.6) 

The scaling dimensions, as given by ( l . l ) ,  are 

m i  
4 ( 2 - ~ )  

X m , n  =- + n2(2 - y)  

xo = 0 (identity) xu = (magnetisation) 

xb = f (second magnetisation) 

(4.7a) 

(4.76) 

From (4.4) and the last scaling form in (4.5) we can read off the free energy exponent 

2-di=2/yP=7r/A. (4.8a) 

x = 2 (marginal operator). 

Hence from (3.22), the magnetisation scaling dimension is given by 

x u = 2 ~ ~ / ( 2 - c u ) = ( x / 8 A ) / ( x / A ) = $ .  (4.86) 
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This result follows directly from the calculated values of E and pu. We identify p as 
a next-to-leading thermal scaling field with dimensions 

y,  = y = 2A / 7T x p  = 2 - y = x 0.1 * (4.9) 

The renormalisation exponent y thus lies in the interval 0 < y < $. 

criticality variable, take the values 

[Y = (2 - 2 y ) / ( 3  - 2 y )  

P e  = 1/ ( 12 - 8Y 1 

The usual critical exponents (Baxter 1982), defined with t as deviation-from- 

Pu = ( 2  - Y)/W - 1 6 ~ )  

6, = 15. 
(4.10) 

This yields 

x, = 2 - 2 /  (2 - a) = 1/ (2 - y )  = X2,& 

X, = 211, = 2Pe/(2-  a )  = 1/4(2 - y )  = ~ 1 . 0  

(4.11a) 

(4.11 b) 

in agreement with (4.7a) and the identification (4.86). 
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